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Chiral gauge theory for the graphene edge
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An effective-mass theory with a deformation-induced (an axial) gauge field is proposed as a theoretical
framework to study graphene edge. Though the gauge field is singular at edge, it can represent the boundary
condition and this framework is adopted to solve the scattering problems for the zigzag and armchair edges.

Furthermore, we solve the scattering problem in the presence of a mass term and an electromagnetic field. It is
shown that the mass term makes the standing wave at the Dirac point avoid the zigzag edge, by which the local
density of states disappears, and the lowest and first Landau states are special near the zigzag edge. The (chiral)
gauge theory framework provides a useful description of graphene edge.
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I. INTRODUCTION

The graphene edge has attracted much attention'~® be-
cause it is the source of a wide variety of notable phenom-
ena. For example, the zigzag edge possesses localized edge
states.”!? The edge states enhance the local density of states
(LDOS) near the Fermi energy.'>-'® As a result, the spins of
the edge states may be polarized by Coulombic interaction.!!
Another type of edge, the armchair edge, does not support
edge states. The zigzag edge is the source of intravalley scat-
tering while the armchair edge gives rise to intervalley scat-
tering. The transport properties near the armchair edge may
differ significantly from that near the zigzag edge;'”'® how-
ever, the reason for this variety is unclear.

The Schrodinger equation is a differential equation; there-
fore, an appropriate boundary condition should be imposed
on the equation. The boundary condition is sensitive to the
situation of the edge, while the local dynamics, as described
by the Schrodinger equation, are the same everywhere in a
graphene sample. The wave function and energy spectrum
are dependent on the boundary condition. In this sense, the
boundary condition is the origin of the variety.'*? In this
paper, we attempt to construct a theoretical framework in
which the edge is taken into account as a gauge field and not
as a boundary condition for the wave function. We show that
the framework is useful to obtain and understand the stand-
ing wave and edge states.

This paper is organized as follows. In Sec. II, the qualita-
tive features of the reflections from the zigzag and armchair
edges are shown using the kinematics for elastic scattering.
In Sec. IIT a general form of the electronic Hamiltonian is
given for a graphene sheet with edges. In Secs. IV and V, the
scattering problem is solved for both the zigzag and armchair
edges and the standing-wave solution is obtained. A discus-
sion and summary are given in Sec. VL.

II. REFLECTION OF PSEUDOSPIN

In the inset of Fig. 1, we consider the zigzag edge parallel
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to the x axis by which translational symmetry along the y
axis is broken. Thus, the incident state with wave vector
(ky,ky) is elastically scattered by the zigzag edge and the
wave vector of the reflected state becomes (k,,—k,). In con-
trast, the armchair edge parallel to the y axis breaks the trans-
lational symmetry along the x axis so that the wave vector of
the reflected state is (=k,,k,). The Brillouin zone (BZ) is
given by 90° rotation of the hexagonal lattice, so that for the
incident state near the K point in Fig. 1, the zigzag edge
reflected state is also near the K point, while the armchair
edge reflected state is near the K’ point. Therefore, scattering
by the zigzag edge is intravalley scattering while that by the
armchair edge is intervalley scattering.
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FIG. 1. The pseudospin vector field in graphene BZ. Note that
this field is for the conduction band and the pseudospin field for the
valence band is given by reversing the direction of each arrow. The
singularities in this pseudospin field correspond to the K or K’
points. Appendix A outlines why the pseudospins at the (three)
equivalent K (K’) points are not identical. (Inset top) The hexago-
nal unit cell of graphene consists of A (solid circle) and B (open
circle) atoms. The xy coordinate system is fixed as shown. The
vectors a; and a, are primitive translations. The length of each of
these is a (a=\3a., where a,. is the C-C bond length). (Inset
middle) The vectors b; and b, are reciprocal-lattice vectors defined
by a;-b;=2m3;. (Inset bottom) The vectors R, are expressed as
R =a.e,, Ry,=-(V3/2)a.e,~(1/2)ace,, and R3=(V3/2)a.e,
—(1/2)age,, where e, (e,) is the dimensionless unit vector for the x
axis (y axis).
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Pseudospin is defined as the expected value of the Pauli
matrices o, ,, with respect to the two-component Bloch
function. The pseudospin provides information concerning
the relative phase and the relative amplitude between the two
components of the Bloch function, and it can be used to
characterize scattering at the edges.?> The Bloch function of

the conduction state with wave vector k=(k,,k,) is given by

V=75 i |s (1)

where f,==,e*Ra, f; denotes the complex conjugate of fy,
and R, (a=1,2,3) are the vectors pointing to the nearest-
neighbor B atoms from an A atom (see the inset of Fig. 1).
The pseudospin is then given by

Re[fi]
[l

Im[f, ]
il

(o k=- . oy = . {ok=0,  (2)

where

k k k
Re[fi] = cos(—%a) +2 cos(—#)cos(i),

v 2\3 2
k.a k.a k.a
Im[f, ] =sin| == | — 2 sin —%)cos(L). 3)
LA < \§> (2\’3 2 (

The pseudospin, ({0 )x,{o)k,{0.)x), may be regarded as a
two-dimensional vector field because (o), =0. The arrows in
Fig. 1 show the pseudospin field, ((o)x.{Ty)). (7y) is pro-
portional to Im[fy]; therefore, the angle of each arrow with
respect to the k, axis represents the relative phase of the
Bloch function between A and B atoms. For example, at the
I' point k=0 in Fig. 1, the arrow is pointing toward the
negative k, axis. This implies that the wave function forms
an antisymmetric combination with respect to the A and B
atoms, which can be checked by setting k=0 in Eq. (1).
Since (o) is an odd function of k, as shown in Eq. (3), the
pseudospin in Fig. 1 at (k,,k,) and that at (k,,-k,) point to
different orientations with respect to (o). In contrast, the
pseudospin at (k,,k,) and that at (-k,,k,) point toward the
same orientation. Thus, the pseudospin component perpen-
dicular to the zigzag edge flips while the pseudospin is in-
variant for the armchair edge.

We have seen for the zigzag edge that the reflection is
intravalley scattering and that the pseudospin component
perpendicular to the edge flips. For the armchair edge, the
reflection is intervalley scattering and the pseudospin is in-
variant. More details concerning the scattering, for example,
the relative phase between the incident and reflected waves
and the edge states are difficult to obtain within the above
argument. In subsequent sections we will explore an effec-
tive Hamiltonian to obtain the standing wave and the edge
states.

III. DEFORMATION-INDUCED GAUGE FIELD

The fact that the pseudospin flips at the zigzag edge leads
us to consider a gauge field for the edge that couples with the
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pseudospin in a manner similar to that an electromagnetic
gauge field couples with the real spin. Here, we show the
formulation, in which the effect of the edge is included into
the Hamiltonian as a deformation-induced gauge field.?*

To begin with, we consider a change in the nearest-
neighbor hopping integral from the average value, —v,, as
—Yo+ 6Y,4(r), where a(=1,2,3) denotes the direction of a
bond parallel to R, in the inset of Fig. 1. The deviation
6Y.4(r) represents a lattice deformation in a graphene sheet.
The low-energy effective-mass equation for deformed
graphene is written as

W (r) _ WKU’))
H(r)<wK,<r>>‘E<wKr(r> | “

where Wi (r) and Wi/ (r) are two-component wave functions

that represent the electrons near the K and K’ points, respec-

tively. The Hamiltonian for deformed graphene is written
24

as

o [p+AYN)]  Fr)o, ) )
H(r)o, o [p-A%D)]/)’

where p=—i#iV is the momentum operator, o= (0, 0,), and
0'=(-0,,0,). A lattice deformation &y, ,(r) enters the
Hamiltonian through the deformation-induced gauge field
Ad(r)=[Al(r),Al(r)], where A4(r) is expressed by a linear
combination of 8y ,(r) as?*26

H(r)= vp(

1
vpAl(r) = 570,1(1') - 5[570,2(1‘) + 570,3(1‘)],

—

3
UrAN(F) = [ 830(r) = 6%05(0)]. (©)

The AY(r) field causes intravalley scattering while the per-
turbation that is relevant to intervalley scattering is given by
a linear combination of A(r) and Al(r) as?*

$(r) = [Al(r) +iA}(r)Je >, ™)

In Fig. 2(a), we consider cutting the C-C bonds located on
the x axis at y=0 in order to introduce the zigzag edge in a
flat graphene sheet. After cutting the bonds, the graphene
sheet splits into two semi-infinite parts: y >0 and y <0. The
cutting is represented as 8y, (r)|,0="v0, 8¥2(r)=0, and
6%03(r)=0. From Eq. (6), the corresponding deformation-
induced gauge field is then written as Ad(r)=[Al(y),0],
where Al(y) is not vanishing only for the C-C bonds located
on the x axis at y=0 as Al(y) |y=0=(yo/vp). Since Al(y) is
defined for the C-C bond, AJ(y) is meaningful when it is
integrated from —¢§, to &, where &, is of the same order as
the C-C bond length and will be taken to be zero at the end
of calculation in the continuum limit. Note also that the vec-
tor direction of AY(r) is perpendicular to that of the bond
with a modified hopping integral. Since the zigzag edge is
not the source of intervalley scattering, intervalley scattering
can be ignored. Hereafter, we consider the electrons near the
K point for the zigzag edge. Moreover, separation of vari-
ables can be employed due to translational symmetry along
the x axis. As a result, Wg(r) and p, in Eq. (5) can be re-
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(a) zigzag edge

FIG. 2. (a) The bonds on the dotted line at y=0 are cut to
introduce the zigzag edge (Klein edge). The cutting is represented
as a deformation-induced gauge field Ad(r)=[AJ(y),0]. (b) The
deformation-induced gauge field for the armchair edge is given by
Ad(r)=[A}(x),0].

placed with ¢***W(y) and p,. The energy eigenequation can
then be simplified as Hg(y)Wg(y)=EWk(y), where the
Hamiltonian is

Hy(y) = ve{o[p,+ Al ]+ oyp, ) (8)

This Hamiltonian is solved in Sec. IV. The cutting which
produces the Klein edges®’?® is represented as Sy, (r)=0,
8¥02(1)|y=0= Y0, and 8y 3(r)|,-0=y,. From Eq. (6), the cor-
responding deformation-induced gauge field is then written
as Ad(r)=[-AJ(y),0], where Al(y) is the gauge field for the
zigzag edge. Note that the direction of the A4(r) field for the
Klein edge is opposite that of the zigzag edge.

The armchair edge can be introduced by cutting the bonds
located on x==*4, as shown in Fig. 2(b). By setting
8Y0.1(r)=0, 8¥,5(1) |\=—s= o, and 8y 3(r)|,=5= ¥, in Eq. (6),
the deformation-induced gauge field for the armchair edge is
written as AY(r)=[A}(x),0] with the limit of 6—0. Due to
translational symmetry along the y axis, p, is replaced to p,
in Eq. (5). Thus, the Hamiltonian is given by '

(ax[ﬁx +AY0)] + ayp, P, )
o H() o, — o [p, - AYD)] + oyp,

with ¢9(x)=A%(x)e~***, This Hamiltonian can be reduced
further by means of a gauge symmetry in the following man-
ner. Since Al(x) does not depend on y, it can be represented
in terms of a scalar function ¢(x), as A(x)=d,¢(x). Using
the gauge transformation: Wi (x) — e W (x) and Vi, (x)
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— eIV (x), Al(x) can be erased from the Hamiltonian for
each valley. However, note that as a result of this gauge
transformation, ¢9(x) must be changed into e2¢™9(x). To
minimize notation, let us use ¢(x) to denote this gauge-
transformed field so that ¢q(x)EAj(x)ezi[‘P(")‘kF"]. The
Hamiltonian for the armchair edge is then written as

H(x)a, )

- 0P+ oy,

P+ Ty,

¢(x)" 0,

This will be solved in Sec. V. Note that by introducing 7,
(a=1,2,3) matrices defined by

01 0 —il I 0
n=\; o) 2\ o) "=\o -7 1O

the unperturbed Hamiltonian is represented in a compact
fashion as Hy(r)=vp(730,p,+70,p,), where 7, is a 4 X4
identity matrix.

In Egs. (6) and (7), we assume |5y.,(r)| < v, and ignore
the higher-order term of &y, ,(r). As a result of this simpli-
fication, the relationship between AY(r) and &y, ,(r) may
deviate from Eq. (6) when |5y, ,(r)|= y,. However, note that
the direction and not the strength of the A9(r) field can be
determined by Eq. (6), even for the case where |8y ,(r)|
=~ v,. Consideration of this point is given in Appendix A.

H(x) = UF( (9)

IV. ZIGZAG EDGE

The scattering problem for the zigzag edge is solved in
this section. Standing-wave solutions are constructed in Sec.
IV A and the properties of the solutions are examined in
detail. Localized edge states are constructed in Sec. IV B.
The behavior of the standing wave in the presence of a mass
term and an external magnetic field is examined in Secs.
IV C and IV D, respectively. The local density of states near
the zigzag edge is calculated analytically in Sec. IV E.

A. Standing waves

To begin with, solutions are constructed for the case of
AJ(y)=0in Eq. (8). Let ®(y) be the eigenstate of the unper-
turbed Hamiltonian HOK(y)=UF(U'pr+O'\ﬁy). HY(y) satisfies
o HY(=y)a,=HY(y); therefore, a general solution may be
constructed from the basis function ®(y) to satisfy the con-
straint equation,

O(-y)=e %0, D(y), (11)

where g is a real number phase. The phase g cannot be an
arbitrary value. The successive operation of Eq. (11) on
®(-y) gives P[—(—y)]=e"28a?D(y) and hence g should be 0
or 7. Note that a set of functions satisfying Eq. (11) is useful
for construction of solutions in the case A(y) # 0 because
Hg(y) also satisfies o Hg(—y)o,=Hg(y). This constraint
comes from the inversion symmetry of the gauge field with
respect to y=0, A}(—y)=A}(y).

From Eq. (11), we have ®g(y)=e*®,(~y). Thus, O(y)
can be rewritten as
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() ()
A(y)):( i A) ) 12)

Dg(y) €D, (- )

By substituting Eq. (12) into HY(y)®(y)=E®(y), we obtain

simultaneous differential equations,

d(y) = (

E d
_q)v(y) = +qu)x()’) + ﬁ_q)a(y),
Ugp dy

d
L) = pad,0) - 5L (), (13)
Ur dy

where @ (y) and ®,(y) are defined as

D,(y) = e D (y) + D (- y),

D,(y) = e EDD,(y) - HEVDy (- y). (14)

For the case g=0, Eq. (14) implies that ®(y) is an even
function [®(y)=P,(~y)], while ®,(y) is an odd function
[®,(y)=—D,(-y)]. Thus, they can be parametrized as fol-
lows:

D (y) =S cos(k,y),

P, (y) =A sin(k,y), (15)

where the parameters S and A can be determined from Eq.
(13). By substituting Eq. (15) into Eq. (13), we obtain the
secular equation

=k -k

P » /s

vF ( >=0. (16)
E

A
-k — +k,

4 hvp

The solution of this secular equation satisfies

E? = (hvp)* (K} + k),

A=—""—5. (17)

—+k
hUF x

Let A(K) be the polar angle between vector k and the k, axis.
Then, k,=k cos 6(k) and k,=k sin 6(k), where k=|k|, and
the second equation of Eq. (17) can be rewritten as A
=S tan[ O(k)/2] for the eigenstate with positive energy E
=fivgk. Assuming that S=cos[A(k)/2], we have A
=sin[ A(k)/2]. Substituting these into Eq. (15) gives

D (y)= cos[ ?] cos(kyy),

d,(y)= sin{?}sin(ky ). (18)

Then, Eq. (18) is substituted into Eq. (14) with g=0 to give
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6(k)
cos| kyy — EN
Dy) = . o(k) e (19)
cos| kyy + EN

Similarly, for the case where g=m, we have

o) |

vy

’ 2
O7(y) = r ﬂ(k): : (20)
sin| kyy + T

sin

The energies of the eigenstates ®°(y) and ®7(y) are equal,
and therefore a general solution can be expressed as a super-
position of the degenerate eigenstates, as

D/ (y) = sin(H)D(y) + cos(HP™(y)

~ (sin[kyy - 0(k)/2 + f] )

sin[k,y + 6(k)/2 + f] 1)

where f is a real number. The value of f is determined as
follows.

The Hamiltonian, Hy(y)=Hy(y)+vpo,A%(y), is identical
to the unperturbed Hamiltonian H%(y) for y to satisfy |y|
= £, so that ®/(y) satisfies the eigenequation Hy(y)®/(y)
=E®/(y) for |y[=&. We need to solve Hy(y)¥k(y)
=EW(y) locally for |y| <¢,. By parametrizing the eigenstate
of Hy(y) as Wi(y)=N(y)®/(y), we obtain the constraint
equation for N(y) and ®/(y) as

{0y [BN()]+ 0, AL YN}/ (y) = 0. (22)

To obtain Eq. (22) we must place Wg(y)=N(y)®/(y) to
Hy(»)W(y)=EWg(y) and use Hy(y)®/(y)=E®/(y). Here,
we have assumed that the energy eigenvalues of the standing
wave Wi (y) and of ®/(y) are the same. This assumption is
valid for the standing wave because the energy eigenvalue is
determined by the bulk Hamiltonian H%(y) and the energy
does not change through elastic scattering. However, note
that this assumption is not valid for the edge states, which
Hi(y)Vk(y)=EWVk(y) must be solved directly (see Sec. IV B
for more details). Now, Eq. (22) is equivalent to the two
successive equations,

[Af?(y)N(y) - ﬁdz—;y)]%(y) =0,

dN(y)

{Ai'(y)N () + ﬁw} PL(y) =0. (23)
The following two cases can be considered for this succes-

sive equation. One case is that the solution satisfies

dN(y)

AdYNGy) +h——=0,
dy

DL =0 (y=¢&). (24)

The first (second) equation of Eq. (24) ensures the second
(first) equation of Eq. (23). The other case is that the solution
satisfies
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d
AYING) - ﬁ% ~0,
PL(y) =0, (y=¢&). (25)

The two conditions, Egs. (24) and (25), correspond to the
standing wave in the upper semi-infinite graphene plane for
y>0 and that in the lower plane for y<<0 in the limit of
§g:0, as shown in the following.

For the case of Eq. (24), the first equation is integrated
with respect to y, to obtain

£
N(=§,)= N(@)@XP[ % f A?(y)dy} . (26)

~&

Hence, when (1 /ﬁ)ﬁgf Al(y)dy>0, N(&,) is negligible com-
pared with N(=§,), and therefore the standing wave appears
only for y<<0. In contrast, when (l/h)fﬁgg Al(y)dy <0, the
standing wave appears only for y>0. The other condition in
Eq. (24) holds for the limit of £,— 0 by setting f=-6(k)/2
in Eq. (21) because

lim Gf"2(y) = 0. (27)
y—>

This condition leads to Wy (0)=0, which represents the
boundary conditions for the zigzag and Klein edges shown in
Fig. 2(a). Thus, Eq. (24) covers two situations, depending on
the direction of the gauge field; Al(y)>0 or A}(y)<0. That
is, when Al(y)>0, Eq. (24) corresponds to the upper semi-
infinite graphene plane with the zigzag edge, while when
Al(y)<0, Eq. (24) corresponds to the lower semi-infinite
graphene plane with the Klein edge. Similarly, when Al(y)
>0, Eq. (25) corresponds to the lower semi-infinite graphene
plane with the zigzag edge, while when AJ(y) <0, Eq. (25)
corresponds to the upper semi-infinite graphene plane with
the Klein edge.

From Eq. (26), it follows that the gauge field for the edge
should be large, (1/ﬁ)f§8§ Al(y)dy|>1. In Ref. 29, the fol-

lowing was obtained anal}ftically

&
! f AYy)dy =~ (1 - c), (28)
i),

where ¢ is the parameter that specifies the deformation as
8Y0.1(r) [,o=c7p (see Fig. 2). The right-hand side gives loga-
rithmic singularities for ¢=1 and c=-%. The limit ¢ — 1 cor-
responds to the zigzag edge while the limit ¢ — —o repre-
sents the Klein edge. Note that when ¢ — —, the electron is
unable to have a finite amplitude on the A and B atoms
located at y=0, which effectively represents the Klein edge.
Because of the singularity, N(y) that satisfies Eq. (26) is
similar to the step function; N(y)=N# 0 for y<<0, and oth-
erwise N(y)=0.

Now, by setting f=—6(k)/2 in Eq. (21), the standing wave
in the conduction band is expressed as
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o infk,y — 6(k)]
e sinlk,y
kk(r) = —N(y)< iy . (29)
Kk VL, sin(k,y)

where the plane wave parallel to the edge with the length L,
is included. The standing wave in the valence band is ob-
tained by using the particle-hole symmetry of the Hamil-
tonian, o Hy(y)o,=—Hg(y), as Wi . (v) =0 Wi (),

sin[k,y — 6(k)] )
— sin(k,y)

ik,x

WY () = %Nw(

(30)

Here, we consider the pseudospin of the standing wave.
The pseudospin for an eigenstate W(y) is defined by the ex-
pected value of the Pauli matrices as (o;)=[o;(y)dy (i
=x,y,z), where o;(y) is a pseudospin density defined by
0:(y)=V'(y)o,¥(y). Note that the y component of the pseu-
dospin is proportional to the imaginary part of the Bloch
function, such as o, (y) < Im[W, Wg]. The Bloch function of
the standing wave is real so that the y component of the
pseudospin for the standing wave vanishes, that is, (o,)=0.
Note also that (0,)=0 means that the current normal to the
zigzag edge vanishes. It is interesting to note that (o,)=0
holds whenever Wy i () and Wy y p(v) can be taken as real
numbers. This indicates that the result {(o)=0 is not sensi-
tive to the value of f but depends only on the fact that &/
does not have a relative phase between the two components.
The condition of Eq. (27) means that the pseudospin density
is locally polarized into the positive z axis near the zigzag
edge, that is, 0.(0)>0 and 0,(0)=0,(0)=0. Actually, by
substituting y=0 into Eq. (29), the standing wave near the
zigzag edge has amplitude only at A atoms. This polarization
of the pseudospin is consistent with the fact that the gauge
field Al(y) has a nonvanishing deformation-induced mag-
netic field,

Bl(r) = 9,A}(r) - d,A}(r) (31)

at the zigzag edge. The presence of the Bl(y) field at the
zigzag edge causes local polarization of the standing-wave
pseudospin near the zigzag edge, similar to the polarization
of a real spin by a magnetic field. We will show in Sec. IV E
that this polarization of the pseudospin causes anomalous
behavior to appear in the local density of states (LDOS) near
the zigzag edge.

A zigzag nanoribbon is given by introducing another zig-
zag edge at y=-L, in addition to the zigzag edge at y=0.
Suppose that the edge atoms at y=—L are B atoms, which
imposes the boundary condition on the wave function at y
==L as lim,__; Wi ,(r)=0. This leads to the constraint
equation for (k,,k,),

k,L+ 6(k) = nr, (32)
where 7 is an integer. It is noted that this equation reproduces
ky,=—k, tan(k,L), (33)

which was obtained by Brey and Fertig in Ref. 30 (the nega-
tive sign in front of k, is a matter of notation). Note that n
should be a nonzero integer because the equation does not
possess a solution when n=0. For the case where the edge at
y=-L is the Klein edge, the boundary condition on the wave
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function at y=-L becomes lim,__; Wi, 5(r)=0. This leads
to k,L=n1r, where n is a positive integer.

B. Edge states

In addition to the standing wave derived in Sec. IV A,
Hy(y) possesses localized edge states.?’ Here, we show how
to construct the edge states.

The following observation is useful in order to obtain the
edge states. Instead of Eq. (15), we assume

®,(y) =S cosh(y/&),

®,(y) = A sinh(y/§). (34)

By substituting Eq. (34) into Eq. (13), the secular equation is
obtained,

E K §_l
hUF * S
-0. (35)
. E A
+& — +k,
hl)p

The solution of this secular equation satisfies

E?= (hvp)*(k: - £7),

A=——"8. (36)

By introducing the ¢ variable, which satisfies
&'=—k, tanh ¢, (37)
we have Ez/(ﬁvp)zzkﬁ/cosh2 ¢. For the case

E__k
hvp  cosh ¢’

(38)

we have A/S=tanh(¢/2). By inserting this into Eq. (34) and
setting S=cosh(¢/2), we obtain

D (y)= cosh(?)cosh(é) ,

D, (y)= sinh(%)sinh(lé) . (39)
By substituting Eq. (39) into Eq. (14) with g=0, we have
cosh(é + ?)
P(y) = (40)

cosh(X - i))
E 2

Similarly, for the case g=m, we have
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- (z é)
sinh §+ 5
D7(y) = (41)
sinh
& 2

The energies of ®7(y) and ®°(y) are equal; therefore, the
basis function may be chosen as

, e+¢/2
D*(y) = DUy) + P7(y) = €™ /§< 02 ) ,

—#2
D (y) = DUy) - P7(y) =™ g(;m ) : (42)

The functions ®*(y) and ®~(y) are exponentially increasing
and decreasing functions of y, respectively. Thus, neither
®*(y) nor ®(y) is a normalized wave function all over the
space, y € (—o,). However, note that ®*(y) and ®~(y) can
be normalizable wave functions for y <0 and y>0, respec-
tively. We also note that the pseudospin of ®*(y) is given by
(o.)=tanh ¢ while that of ®~(y) is (o.)=—tanh ¢.

From the above observation, we parametrize the localized
eigenstate as

8l

W) =N ), (43)
where N is a normalization constant and the modulation of
the pseudospin is represented by a function g(y). Substituting
Eq. (43) into Hg(y)Vk(y)=EWVk(y) gives simultaneous dif-
ferential equations for g(y),

d E
px+Al(Y) +h— [ bl + g(y)] = —e* 0,
dyl & Up

Pyt ALy~ {M - g(y)} S Eean (g
dy | & Ug

By summing and subtracting both sides of Eq. (44), the en-
ergy eigenequation can be rewritten as

po a3 852 E coinpagio,
y Up
ﬁ%(%):igmpgﬂ} (45)

The solution of the second equation is given by

1 h
- —sinh_1<ﬂ> (y<0),

2 ¢E
s=) i (46)
+ Esinh‘1<§—;> (y>0).

The sign of g(y) changes across the zigzag edge and this sign
change indicates that the z component of the pseudospin flips
at the edge. The flip is induced by the gauge field A}(y). To
represent this, we integrate the first equation of Eq. (45) from
y=-§, to &, and acquire
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& d 1 &
- f %dy =z f Al(y)dy. (47)
4 Y ~&

We have neglected other terms because they are proportional
to &, and become zero in the limit of £,=0. By substituting
Eq. (46) into Eq. (47), we find

&
- sinh‘1<%) = %f Ad(y)dy. (48)
_gg

Hence, Eq. (46) becomes

1 lﬁAq y
“2a) O] <0,

g())): 1M1 &
—Elgfggf\ﬁ?(y)dy] (y>0).

(49)

Having described the wave function of the localized state, let
us now calculate E and &. To this end, we use the first equa-
tion of Eq. (45) for [y|= &, and obtain

E D«

== 3 . (50)
UfR 1 8
cosh(—f Aﬂ(y)dy)
hl
8
Moreover, using Eq. (48), we find
1 1 (%
~=—k tanh{ — [ A%y)dy). (51)
¢ i)

In addition to this localized state, there is another localized
state for the same k, with the same & but with the opposite
sign of E. This results from the particle-hole symmetry of the
Hamiltonian and the wave function is given by o, V().

In the following, we will show that the solutions can re-
produce all the properties of the edge states known in the
tight-binding (TB) lattice model,>!"!? such as the asymmet-
ric energy band structure with respect to the K (K’) point,
the flat energy band, and the pseudospin structure.

The asymmetric energy band structure with respect to the
K (K') point originates from the normalization condition of
the wave function, which requires that & should be positive.
This requirement restricts the value of k, in Eq. (51). When
Al(y) is positive, Eq. (51) implies that the localized states
appear only at k£, <0 around the K point. This is the reason
why the localized states appear in the energy spectrum only
at one side around the K point. A similar argument can be
used for the K’ point, which concludes that the localized
state appears at k, >0 around the K’ point. The Hamiltonian
around the K’ point is expressed by

Hy/(r)=vgo’ - [p—Al(r)]. (52)

Therefore, we obtain different signs in front of Ad(r) in
Hg(y) and Eq. (52), which causes the negative sign in front
of the right-hand side of Eq. (51) to disappear for the K’
point. Thus, when Al(y) is negative (Klein edges), edge
states appear on the opposite side; k, >0 around the K point
and k,<0 around the K’ point. Calculations on the TB
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model with Klein edges also agree with the results obtained
here.

A singularity of the gauge field, |A%(y)| — oo, is the origin
of the flat energy dispersion and the pseudospin polarization
of the edge states. When (l/ﬁ)ffgggAx(y)dyHOO, E in Eq.

(50) becomes zero. The zero-energy eigenvalue between the
K and K’ points in the band structure corresponds to the flat
energy band of the edge state.!" Moreover, from Eq. (49),
g(y) — oo for y<0 and g(y) ——o for y>0 are obtained. In
this case, the localized state is a pseudospin-up state W(r)
o«/(1,0) for y<O and a pseudospin-down state Wg(r)
o’(0,1) for y>0. Hence, a singular gauge field at the zigzag
edge causes polarization of the pseudospin of the localized
states. Polarization of the pseudospin means that the wave
function has amplitude only at the A (or B) atom so that this
result agrees with the result from the TB model for the edge
state.!" Comparing Egs. (50) and (51) with Egs. (37) and
(38), the relation between the variable ¢ and the field Al(y)
is observed as ¢=(1/ﬁ)ffg§ Al(y)dy.

Here, we note that N in ﬁq. (43) is not a function of y but
is a constant for y e (—o, ). Therefore, the edge states ap-
pear on both sides of the zigzag edge, y>0 and y <0, while
the standing waves appear on only one side of the edge under
the limit (1/%)% A%(y)dy— * 0. With this limit, the edge
states can be conffned to one side of the edge, because the
energy of the localized state becomes E=0, and therefore,
the superposition of an edge state, Wk (y), and its electron-
hole pair state, o, Wg(y), is a solution. It is easy to see that
Yk (y)+0,VYi(y) has amplitude only for y <0 while Wi(y)
—0,Px(y) has amplitude only for y>0. The wave function
of the edge state for y <0 is then given by

ik,x 1
e e )
\I,K,k <0(r) =T \”2|kx|ek“|"’|< ) 5 (53)
X VLX O

where the normalization constant has been fixed, \s’m, by
assuming that the system is a semi-infinite graphene plane.
We note that the mass term, mo,, is proportional to the
particle-hole symmetry operator, o,. Thus, the mass term au-
tomatically restricts the region where the edge states can ap-
pear (y>0 or y<<0) and this is shown in Appendix B.

Finally, we consider the edge states in nanoribbons. Note
first that the exact localization length for the case of a zigzag
nanoribbon with width L satisfies

(-semn( )
— =—k,tanh| —
3 3

{<—>—ka= (kxg)atanh<i>], (54)
k&
which is obtained by analytical continuation k,=i/¢ for Eq.
(33). Comparing this equation with Eq. (51) shows that the
large value of the gauge field in Eq. (51) corresponds to the
case of L/&é>1 in Eq. (54). This is consistent with having
solved the Hamiltonian locally near the edge in which it was
implicitly assumed that the condition L/ &> 1 is satisfied. Ex-
cept the edge states whose localization length is in the order
of L, Egs. (51) and (54) give almost identical values of &=
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—kxl, which justifies the description using the gauge field.
Note also that the condition L/ &> 1 also represents the con-
dition k,L<<-—1, which is clear from the second equation in
Eq. (54). To solve the Hamiltonian for the edge states with
&=0(L), Eq. (45) must be solved globally, for example, on a
circle, which is a challenging issue.

C. Mass term

Let us reconsider the scattering problem for the case
where the Hamiltonian includes a mass term. The total
Hamiltonian is given by Hy(y)=Hy(y)+mo,, where the
mass, m, is a constant over the space y € (—,+%). The so-
lutions of HyY(y) can be constructed from the solutions of
H(y) as follows.

For H(y), the standing-wave solutions, Egs. (29) and
(30), satisfy

Hy(y) Vi (v) = hopk Wi (v),

Hy(y) Wy () = — hopk Wi (). (55)

For the mass term, because W | (v)=0, Wy \(y), we obtain

mo, Vi () =m¥y (y),

mo, Wy  (v) =m¥y  (v). (56)

Thus, by changing the basis state from |W§ ) and [ ) into
Wk kam) [= (1/\2)(|\I’ W EPENT the Hamiltonian is
represented as

Hm_>(<qukA|Hm|\PKkA> <\I,KkA|Hm|\I,KkB>>
K (U kplHg Wk ka) (PixplHi Vi kp)

m  hugk
= . 57
(ﬁvpk —-m ) ( )

Here, the angle ¢, is defined as

m ) hugk
cos ¢ =—, sin ¢ =

: 58
E, E, (58)

where E,= \m’+(hvgk)>. The normalized eigenvectors of
the matrix in Eq. (57) are then

k . ¢k
COS—— —Sin—_
2 d 2 (59)
an
b b
sin COs
2 2

for_the E; and -E, eigenvalues, respectively. Wi A(y)
—\2N(y)sm[ky 6(k)] and Wi p(y)= \2N(y)s1n(kyy) are
obtained from Eqs. (29) and (30); therefore, the standing
wave near the zigzag edge is given by

~ cos( %) sin[k,y — (k)]

PRR() = V2N(y)
D

sm( 5 )sm(kvy)
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~ - sm(ﬁ )sm[k)y (k)]
V() = V2N(y) , (60)

cos( %) sin(k,y)

where we have omitted to write the plane wave parallel to
the edge. The factors cos(¢,/2) and sin(¢,/2) appear in a
manner similar to the eigenvalue problem of the spin mag-
netic moment in a magnetic field.

D. External magnetic field

In this section, solutions are constructed for a magnetic
field applied perpendicular to the graphene plane.’! A mag-
netic field B can be represented by the electromagnetic gauge
field as A(y)=(By,0). This gauge field is included in the
Hamiltonian by substituting the momentum operator p with
p—eA. For the case A}(y)=0, the eigenequation becomes

UF[Ux(lax -

and the solutions are given by the Landau states, which are
specified by an integer n and a center coordinate Y as

eBy) + 0,p, |®(r) = E®(r) (61)

q)%;(r) =C,y ei(Yx/lz) (120 - YI1)?

» (Sgn(n)\/mHn-l[(y -Y)/] ) s
- H,[(y=1)1]

where C,y is a normalization constant, [= \Vh/eB, and

H,(x) is a Hermite polynomial defined by H,(x)

—( 1)"e Xz(d/ dx)"e™ (n=0). The energy eigenvalue of
LL(r) is given by E,=sgn(n)\2[n|hvg/L.

A method similar to that in Sec. IV A is used to solve the
scattering problem in the presence of a magnetic field. The
energy elgenstate of Hg(r) is parametrized as Wg(r)
—N(y)(DnY(r) Substituting this into Hg(r)Wk(r)=E,Vk(r),
and using HY (r)(I)LL(r) =E, CID (r) we obtain the constraint
equation for N(y) and <I> (r)

{o,[p,N»)]+ g, AL Y)N(»)}Phy(r) = 0. (63)

Two cases can be considered as a solution for this successive
equation [see Eqgs. (24) and (25)]. Here, we choose the case
where

AUGING) + ﬁ‘”z(y ) o,
y
D=0 (y=¢). (64)

From Eq. (62), the second equation leads to

Coye™ 2V H (= 2Y11) = 0 (65)
with the limit £,— 0 (y— 0). The number of zeros of H, is
so that there are |n| solutions of Eq. (65), which are

denoted as Y; (i=0
ten as
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Wiy (1) = )DL (1) (66)

Note that Wy ,,(r) with a large value of Y that satisfies Y
>/, can be an approximate solution, due to the exponential
factor in Eq. (65). The solution with a large value of Y rep-
resents the wave function in the bulk and is not sensitive to
the details of the edge. The solutions given in Eq. (66) con-
cern the Landau states near the zigzag edge and these are
examined in the following.

For the case that n is an odd integer, Y=0 satisfies Eq.
(65), because H,(0)=0. The wave function with ¥=0 decays
according to exp(—y?/2/?) and the amplitude has a maximum
at the zigzag edge. Note that the localization length is in the
order of [ (I=25 [nm]/vB [T]), which is larger than the
localization length of the edge state é&=—k_', where k' takes
a value of the same order as the lattice constant.

The lowest Landau level (n=0) cannot satisfy the condi-
tion of Eq. (65) because Hy(—2Y/[)=1 and the amplitudes of
B atoms do not vanish at the edge. Thus, the lowest Landau
level is absent for the K point. On the other hand, the lowest
Landau level appears for the K’ point. The Hamiltonian for
the K’ point is given by

HK’(r) = vF{_ O-x[ﬁx - e‘Ax(y) - Ag()’)] + o-vﬁ)} (67)

For the case of A}(y)=0, Hg(r) and Hy/(r) are related as
Hy:(r)=0,Hg(r)o,, and therefore the solutions for the K’
point are given by O'yCI)];I;,(r). The constraint equation for the
K’ point is

{o,[p,NO) ]+ 0, AN, @y (1) =0, (68)

which reduces to the condition (IDEIL,, A(»)=0. The solution is
then given by

LL
\I,K’,nYJ{ (l') = N(y)o.yq)ny[(r) s (69)
J
where Y; denotes the solution of the constraint equation,
C,ye 2o ] Hiypa(= Y11) = 0. (70)

This condition is satisfied for n=0 so that the lowest Landau
level appears for the K’ point. There is no constraint for the
value of Y. For the case of the first Landau levels (n=* 1),
the Landau level for the K point appears, while that for the
K’ point disappears. Therefore, near the zigzag edge, the
lowest and first Landau levels are not symmetric with respect
to the K and K’ points.

E. Local density of states

Several groups have conducted scanning tunneling spec-
troscopy measurements to determine the LDOS near the step
edge of graphite.!3"1% A peak structure in the LDOS due to
the edge states has been extensively discussed by many au-
thors. Here, we calculate the LDOS near the zigzag edge. We
show that some characteristic features that originate from the
pseudospin polarization, the edge states, and the mass appear
in the LDOS.

Let us first review the LDOS for graphene without an
edge. Assuming that electrons are noninteracting, the bulk
LDOS is given by
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g LB -
PE = (71)

where p(E) is proportional to |E|, which results from the
Dirac cone spectrum. Note that the actual LDOS is given by
8:8,p(E), where g,=2 (g,=2) accounts for the spin (valley)
degrees of freedom. Next, the LDOS near the zigzag edge is
calculated using the solutions given in Eq. (60). The LDOS
has the form,

1]

E,y)=— R(E 72
ps(E.y) 2 (iog)? (E.y), (72)
where R(E,y) is defined as
1 (™ .
R(E,y) = ;J doVy , (»)" Vg (). (73)
0

By performing the integral with respect to the angle 6 in Eq.
(73), we obtain an analytical result for R(E,y) as

F(kly)) + %G(klyl) (E>0).
R(E.y) = (74)
F(k|y)) - %G(kbl) (E<0).

where k is a function of E according to k=\E*>-m?/(fivg),
and the functions F and G are defined as

Jo<zk|y|>+J2<zk|y|>}

F(kly)=1 —{ 5

Jo(2k|y|) = J,(2k]y))
5 .

G(kly|) = (75)
Here, J,(x) is a Bessel function of order v.

Because the case of m=0 has been considered
elsewhere,?> we consider the case m # 0 here. Equation (71)
holds for |E|=|m|. The bulk LDOS vanishes for the case
|E| <|m|, as shown by the dashed line in Fig. 3. Note that the
LDOS disappears suddenly at E=*m and the bulk LDOS
has a steplike structure at E= = |m|. The bulk LDOS is sym-
metric with respect to £=0, even for the case m # 0. How-
ever, note that the LDOS near the edge is not symmetric for
the case of m # 0, which is clear from the different signs in
front of the function G in Eq. (74). In Fig. 3, the LDOS are
plotted at [y|=0, 1, 2, and 3 (nm) for the case of m
=0.2 eV. Note that for the case m=-0.2 eV, the corre-
sponding LDOS curve is given by interchanging the conduc-
tion and valence bands in Fig. 3.

The asymmetry in the LDOS near the edge appears at the
following points. First, a step structure appears only at E
=0.2 eV. At E=-0.2 eV, the LDOS vanishes, and the step
structure is absent, as indicated by the dashed circle in Fig. 3.
The absence of the LDOS at E=-0.2 eV can be explained
by the zigzag edge consisting of A atoms makes the
standing-wave polarized into A atoms near the zigzag edge.
However, eigenstates with energy E=—m should be polarized
into B atoms by the factors in Eq. (59) and the amplitude of
A atoms are strongly suppressed by the mass term. There-
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FIG. 3. Positional dependence of the LDOS structure for the
cases of m=0.2 (eV). The number located on each solid line rep-
resents the distance (corresponding to |y| in the inset) from the
zigzag edge. The LDOS at E=-m vanishes near the zigzag edge,
which is emphasized by the dashed circle. The dashed line denotes
the LDOS in the bulk which is defined by the LDOS at |y|— . A
peak structure due to the edge states is plotted for comparison. Note
that there are several intrinsic perturbations (Ref. 33) that can
change the position of the peak.

fore, electrons with energy E=—m cannot approach the zig-
zag edge, and therefore the LDOS disappears. Second, the
LDOS peak of the edge states appears only at £=0.2 eV.
This is a straightforward consequence of the edge state am-
plitude appearing only for A atoms. The absence of the
LDOS at E=-m and the presence of the peak at E=m due to
the edge states occurs at different sides of the band edge. To
plot the LDOS of the edge states in Fig. 3, we have used

26 1

2P E—myt By 76

pe(E Y ) =
where & is a phenomenological parameter that represents the
energy uncertainty of the edge states for which we assume
6=10 meV. This result has been derived in Ref. 32 for the
case of m=0. Note that p,(E,y) decreases as ~y~2, which is
a slowly decreasing function compared with the exponential
decay wave function of the edge state.

V. ARMCHAIR EDGE

In this section, the scattering problem for the armchair
edge is solved using a method similar to that used in Sec. IV.
The standing wave shows that the pseudospin does not
change its direction through the reflection at the armchair
edge.

A. Standing waves

Solutions for the case of ¢%(x)=0 in Eq. (9) are con-
structed first and then used as the basis functions to construct
the standing wave near the armchair edge. Let ®(x) represent
the solution of the unperturbed Hamiltonian, H(x)
=vp(T30p+ 190,p,). The perturbed Hamiltonian satisfies
H(-x)=71H(x)7, so that the functions ®(x) that satisfy the
constraint equation
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1 ®(—x)=e8D(x) (g=0,m) (77)

are useful for construction of solutions in the case of ¢9(x)
#0. From Eq. (77), we may write

Dy (x) )
D)= . . 78
) (e’gq)K(— x) (78)
By using Eq. (78), the energy eigenequation becomes
E . d
(h/_l)p - O-,VkY> (I)s(x) == la’xaq)a(x) s
E )
(ﬁ_vp - O'yky> D, (x)=- zaxa(bs(x) , (79)
where @ (x) and ®,(x) are defined as
D,(x) = Dy (x) + 7 ENDy (- ),
D, (x) = e &Py (x) — e Py (- x). (80)

For the case g=0, ®(x) is an even function, while ®,(x) is
an odd function. For the case of g=1, ®(x) is an odd func-
tion, while ®,(x) is an even function.

For the case g=0, we can set

® (x) = cos(kx) P,

®,(x) = i sin(kx) b (81)

Substituting these into Eq. (79), we obtain the secular equa-
tion

E
(ﬁ—vF—a.k>¢=o. (82)

The solutions of this secular equation satisfy E= & fivgk, and
the eigenfunction in the conduction band is given by ¢,
which is defined as

! < itk )
C == . (83)
Pk x A

By substituting Eq. (81) into Eq. (80), we obtain ®g(x)
=e gy /2. Using Eq. (78), it can be seen that

e+ikxx
PO(x) = ¢§<,k<6_ikﬁ). (84)
Similarly, for the case g=, we have
e+ikxx
CI)‘fT(x) = ¢)f(,k<_ g‘ikxx ) . (85)
New basis functions are defined using Eqgs. (84) and (85) as

. 1 . . e+ikxx
D% (x) = E[‘D (x) + P7(x)] = i 0o )

, 1 , 0
PR (x) = E[qDO(x) -®7(x)]= ¢§<,k<e_,»k xx) (86)

The eigenstate ®X(x) represents a free propagating state with
momentum k near the K point while ®X (x) represents a
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state with momentum k’=(-k,,k,) near the K’ point. It is
clear that these are eigenstates in the absence of the edge. In
the presence of the armchair edge, neither ®¥(x) nor (bK,(x)
is an eigenstate, but a true eigenstate is the standing wave
that is given by a superposition between ®X(x) and ®K’(x)
as

W(x) = K DK(x) + K () DK (x). (87)

To find X' (x), it is useful to rewrite the total Hamiltonian
as

H(x) = Hy(x) + vro [ §}(x) ) + ¢}(x) 7], (88)

where ¢9(x) is expressed in terms of real and imaginary
parts, as ¢(x) = ¢pd(x)—igd(x). In Sec. III, we have shown
that (bq(x)EA)qC(x)ez"[“’(x)‘kFx], where Al(x)=d,0(x). Al(x) is
an even function with respect to x; therefore, ¢(x) can be
taken as an odd function so that the field satisfies ¢9(—x)
=¢(x)". From this condition, it follows that ¢}(x) is an even
function, while ¢l(x) is an odd function.

Next, we construct solutions for the case ¢(x)=0. Let us
define ¢;(x) and ¢,(x) using a real function f(x) as

(cpl(x)> ) (h 70) sinh f0x) )( () ) (59)

@(x) ) \sinh f(x) cosh f(x) ] \®K'(x)

Since ®¥(x) and (IJK,(x) are the solutions of Hj(x), we obtain
the following equations for f(x) from H(x)g(x)=E@;(x),

( Pe  —ii(v) ) <cosh () sinh f(x)

i) —p, /\sinhf(x) cosh f(x)

All four components of this matrix are reduced into the same

differential equation: d,f(x)=—¢,(x)/%. ¢;,(x) is an odd func-

tion so that we have f(£,)=f(-£,) by using [% ¢(x)dx=0.

Because f(x)=0 when ¢,(x)=0, the constant of integration

can be taken as zero. As a result, we have f(£,)=f(-§,)=0.
Therefore, f(x) can take only a nonzero value for |er’§ &g

) =0. (90)

and the mixing between ®X(x) and <I>K,(x) is negligible in
the bulk.

Finally, we assume that the solution of the total Hamil-
tonian of Eq. (88) has the form of

V. (x) = N(x)[g) (x) F iga(x)]. 1)
The constraint equation for N(x) is then given by
dN(x) B

¢ (x)N(x) = A 0. (92)

dx
This constraint equation has the same form as Egs. (24) and
(25). Performing the integral for x from —£, to £, in Eq. (92)
gives

Ne+&) ;lfg }
N(— gg) =€ pl ﬁ _§g ¢r(x)dx . (93)

As we have shown in Fig. 2, ¢,(x) is a negative large quan-
tity. Thus, W, (x) has an amplitude only for x> ¢, while
W_(x) has an amplitude only for x<-§,. <p1(x)=<I>Kg(x) and
@2(x) =®K (x) for |x|= &,: therefore, the standing wave near
the armchair edge is written as
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reflected wave

) K

K x armchair edge

incident wave

FIG. 4. The armchair edge reflects the wave vector k=(k,,k,) of
one valley into k'=(—k,,k,) of another valley and the two wave
functions of the different valleys form a standing wave. The pseu-
dospin is unchanged by the armchair edge. Note that the pseudospin
for states near the K’ point is not parallel to the vector k” while the
pseudospin for states near the K point is parallel to the vector k.

. eik},y . e+ikxx

() = N ¢K,k( gy ) . 94)
Note that the Bloch functions for the K and K’ points are the
same, which indicates that the pseudospins of the incident
and reflected waves are equal, as shown in Fig. 4. Thus, the
Berry’s phase of the standing wave near the armchair edge is
given by —m, which is in contrast to the case of the zigzag
edge.? The boundary condition for the armchair edge does
not forbid an electronic state to cross the Dirac singularity
point, and therefore the electron can pick up a nontrivial
Berry’s phase.

To understand the behavior of the standing wave in more
detail, the density of 7, was examined. The density for an
eigenstate W(y) is defined by the expected value of 7, as
7,(0) =V (x)7,¥(x). It is then straightforward to check
from Eq. (94) that 7;(x) o *sin(2k,x), 7(x) o = cos(2k,x),
and 73(x)=0. 7/(x) vanishes near the armchair edge (at x=0)
and 7,(x) takes a maximum value at the edge. This behavior
can be understood from Eq. (88) in which 7, couples with
¢,(x). Since ¢,(x) is singular at x=0, 7;(x) cannot have a
nonzero value at x=0. The result 7;(x)=0 indicates that time-
reversal symmetry is preserved.

B. External magnetic field

Let us examine the Landau states near the armchair edge.
The electromagnetic gauge field A=(0,—Bx) for an external
magnetic field B is included in the Hamiltonian H(r) of Eq.
(5) by the substitution p— p—eA. The Hamiltonian satisfies
H(-r)=1,0,H(r)o,7, and therefore the solution can be writ-
ten as

Wi(r) ) . 95)

q’K(r)
Wir) = (%«(r) ) = <el‘gowa<— ”

Let ®g(r) be the solution for the case ¢4(x)=0. Then Pk (r)
satisfies the following energy eigenequation:

velowp, + 0,(p, + eBx) |Pk (r) = EDy(r). (96)

The solutions are the Landau states specified by integer n
and a center coordinate X as [see Eq. (62)]
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q)%(l') = C,,Xe‘i(x>’/12)e‘<1/2)(x - X/1)?

y (sgn(n) \f'g|7|H|n\_l[(x - X1} ) o
- lH‘n‘[(x - X)/1]

Applying the parity transformation r——-r to CI)k,LnX(r), we

obtain
CI)]Iglan(— r)=(- l)”+10zq)llg{;l_x(r). (98)

The matrix o, on the right-hand side can be understood by
applying the parity transformation r——r to this energy
eigenequation,

viloup, + 0y(Py + eBx) [P (- 1) == EDg(-1).  (99)

The negative sign in front of the right-hand side shows that
the energy eigenvalue of ®g(-r) is opposite to that of P(r).
By substituting Eq. (98) into Eq. (95), we obtain

(I)E,an(r) )

. 100
—ie'8 Uyq)l]gﬁ1_x(r) (100)

@ () = (
By repeating the same argument given in Sec. V A, the fol-
lowing standing-wave solutions are obtained,

(D]IEIan(r) )

(101)
+ Uyq)%n_x(r)

Wy (x) = N(x)<
There are no constraints for the value of X. It is then a
straightforward calculation to check that 7;(x) vanishes at the
armchair edge.

VI. DISCUSSION AND SUMMARY

A realistic graphene edge may be a mixture of zigzag and
armchair edges.'3!® The construction of the standing wave
near the general edge is one of the interesting applications
for our framework. We believe that the Hamiltonian in Eq.
(5) can describe the low-energy electrons in a graphene plane
with a general edge. However, note that this issue is related
to the coherence length of the standing wave. In the present
paper, we have not considered perturbations that break co-
herence, such as electron-phonon interaction. Interestingly,
the electron-phonon interaction can also be represented as a
deformation-induced gauge field.?*** Thus, the gauge-field
description for the graphene edge may be useful when we
consider such issues.

The effective-mass model of Eq. (5) is equivalent to a
chiral gauge theory for graphene that has been proposed by
Jackiw and Pi.® Indeed, by applying o, to ¥/ (r) in Eq. (4),
the Hamiltonian in Eq. (5) may be rewritten as

H' = (a- [B+AD]  B0)
U )T —e[p-AY)]

which is the electronic Hamiltonian of the chiral gauge
theory. They have investigated zero-mode solutions of the
Hamiltonian with a topological vortex for A9(r) on the back-
ground of Kekulé distortion for ¢4(r), in the context of frac-
tionalization of quantum number.**=3® Our trial is then to
study the graphene edge as a chiral gauge theory, although

), (102)
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our results in this paper do not clarify fully the topological
features of the graphene edge. It is interesting to note that
one may find an advantage of a chiral gauge theory when we
consider the real spins of the electrons. For example, the
magnetism of the edge states may be understood as a parity
anomaly phenomenon.3*#? The various field-theoretical tech-
niques may be utilized to explore the electronic properties
near the edge. Note also that the perturbation which mixes
the electrons in the two valleys has been examined in the
studies on the topological defect in graphene.*!*?

We have taken into account the edge as a part of the
Hamiltonian. This strategy stems from the TB lattice model,
in which the edge is automatically included as a part of the
Hamiltonian. A similar concept is found in the article by
Berry et al.,' in which the authors modeled the edge using a
mass term, V(r)o,. They considered that a singularity of the
mass V(r)— o outside of the edge is necessary in order to
uniquely specify the pseudospin. We have observed a similar
situation for the deformation-induced gauge field for the
edge, that is, the field is singular at the edge. It is also inter-
esting to note that ¢(r) in Eq. (102) corresponds to the mass
of a Dirac fermion, and that the armchair edge is a singular
point as for the mass.

In summary, we have proposed a framework in which the
edge is represented as the deformation-induced gauge field.
We have used the framework to investigate the standing
waves and edge states in the presence of a mass term and a
magnetic field. The description of the edge using the
deformation-induced gauge field is one attempt to better un-
derstand the edge. If we can describe the variety of edge
structures as different configurations of a single gauge field,
it provides a basis to further explore the properties near the
edge.
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APPENDIX A: ROTATION OF PSEUDOSPIN

The configurations of the pseudospin field for three
equivalent corners of the graphene BZ are not the same, as
shown in Fig. 1. Consideration of this pseudospin behavior is
given in this Appendix.

The TB Hamiltonian can be written as

H(K) = - ,
NSrw o

24

(A1)

where f,(k)=e*Ra (a=1,2,3). Note that f,(k) satisfies
fak+nby +mby) = f,(k)e T3 (A2)

where n and m are integers. Hence, the representations of
H(k), H(k+b,), and H(k+b,+b,) are different from each
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other, and are related via H(k+b,)=MH(k)M~' and H(k
+b,+by)=M""H(k)M, where

e+i27T/3 0 27T
M= 0 o273 =exp I?O'Z .

For the solution W of H(k), we have the corresponding so-
lution of the effective Hamiltonian at k+b; as \Ifbl =MV. M
is a rotational matrix for the pseudospin around the z axis so
that the pseudospin of W and that of MW are related by
rotation around the z axis by an angle of 277/3. This explains
why the configurations of the pseudospin field around the
three equivalent K (K') points are different from each other,
as shown in Fig. 1.

Next, we consider the effective Hamiltonians for three
equivalent K (K’) points. By expanding f,(k) around the
wave vector of the K point, kp=(47/3a,0), we obtain
fakp+k)=fo(kp) +if,(kp)k-R,+---.  Using  fi(kp)=1,
fo(kp) =™ and fi(kp)=e*C™) we have H(kp+k)
=vpo-p+--+, where p=hk and vg=37ya./2h. Then
H(kg+b+K)=Mvgo-pM~'+--- and H(kp+b,+b,+k)
=M"'vgo-pM+- - are obtained. The same argument can be
applied to the K’ points. For the K’ point at —kg, we obtain
the effective Hamiltonian H(—kg+K)=vgo’ -p+---. It is then
straightforward to obtain H(-Kkp+b;+Kk)=Muvgo' -pM~!
+-+- and H(-kp+b,+b,+k)=M"'vpo’ -pM+---. This dif-
ference in the representations of the effective Hamiltonians
does not cause a problem because a coordinate transforma-
tion can be used to eliminate the M matrix from one effective
Hamiltonian (see also Appendices in Ref. 43).** Here, we
imply the coordinate transformation as the rotation of the x
and y axes by *£27/3. A coordinate transformation cannot
alter the physics, and therefore the physical result derived
from the effective Hamiltonians are the same. Rather, by
using the change in the effective Hamiltonians under a trans-
lation given by the reciprocal-lattice vectors, a constraint for
the form of the effective Hamiltonians can be obtained. For
example, the deformation Hamiltonian, o-A4(r), should
transform in the same way as o-p. Therefore, we must have
H(kF+k):UFU'(p+Aq)+"', H(kF+bl+k):MUFO"(p
+AOM ' +---, and H(kg+b,;+by+k)=Mvpo- (p+A)M
+---. Otherwise, there would be three physically distinct ef-
fective Hamiltonians for the same K point. The deformation-
induced gauge field A(r) satisfies this constraint because

vl AY(r) —iAYr)]= X 8y, (0)fu(kp).

(A3)

(A4)

Note that this equation is equivalent to Eq. (6). The phase
factor of e*2™3 appears when we change kg to kg+b, and to
kg+b; +b,, due to the factor of f,(kg) on the right-hand side.
A notable feature is that the constraint must be satisfied for a
strong lattice deformation that corresponds to a large value
of A4(r). Therefore, the direction of the gauge field does not
change, although the values of 7, ,(r) are renormalized for a
strong deformation.

APPENDIX B: EDGE STATES AND MASS

The edge states in the presence of a mass term is of in-
teresting because the magnetism of the edge states is related
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to the generation of a local spin-dependent mass term due to
the Coulombic interaction.*® Here, we show how to obtain
the edge states in the presence of a uniform mass term.

By substituting Eq. (43) into HZ(y)¥k(y)=EW¥k(y), we
obtain instead of Eq. (45),

pr 430 + 52 D cost2g(0) +1],
hfy(%) = D sinh[2g(y) + f], (B1)

where the variables D and f are, respectively, defined as

1 —
_VEZ —_ m2
UF

D

*

and tanh(f) = - % (B2)

The solution of the second equation in Eq. (B1) is

—sinh™| — ] (y<0),
D
28(y) +f= (B3)

+ sinh‘1(§%> (y>0).

The first equation in Eq. (B1) is integrated with respect to y
from —§, to &, Considering the limit {,— 0, only singular
functions of A(y) and g(y) at y=0 can survive after the
integration, so that we obtain

&
—sinh‘1<§%) =f Ad(y)dy. (B4)
£

Using Egs. (B3) and (B4), we see from the first equation in
Eq. (B1) that

Dx

&
cosh{ f Ag(y)dyJ
_ég

holds except very close to the edge. From Egs. (B4) and
(B5), we see that £ is given by

D=

(B5)

&
1 =—k, tanhlf A;‘(y)dy} . (B6)
& &

Note that ¢ in the presence of a mass term is identical to & in
the absence of the mass given in Eq. (51). The mass term
would affect £ but this is not the case. From Egs. (B2) and
(B5) we obtain the energy eigenvalue

E= * \m*+ (vgD)*. (B7)

When ff% Ad(y)dy — o, we obtain D=0 and E= = |m|.
Accordging to the definition of f in Eq. (B2), the sign of
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f depends on the signs of both m and E. Let us first consider
the case of E<0 by which we have f=sign(m)|f]. Using this
expression for f in Eq. (B3), we obtain
1 (% 1.
+5 | Ay = Jsign(m)lff (v <0),
_§g

g(y) = & 1
-3 j Al(y)dy - Esign(m)Ifl (y>0).
&,

(B8)

To determine |f], we substitute Eq. (B7) into Eq. (B2), and
considering that tanh(|f]) can be approximated as 1-2e~2
for [fl>1, we then have [f|=[f%Ady)dy| for

. g
|f§é’§gA§(y)dy >(. Since ff%gAj(y)dy>0 for the zigzag edge,
Eq. (B8) becomes

&
AY(y)d 0),
o(y) ~ f_gg (Mdy (y<0) (89)

0 (y>0),

when m<<0. The wave function of this eigenstate for y >0,
which has unpolarized pseudospin, is negligible due to the
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normalization. Thus, the localized state with energy E=
—|m| in the valence energy band can appear near the edge
only for y<<0, and the wave function is given by Wg(y
<0) cexp(=|y|/&'(1,0). Similarly, for the case of m>0, we
have

0 (y <0),

=~ §g
-&,

(B10)

The corresponding wave function is has the pseudospin
down state, which appears only for y >0 near the edge. It is
noted that the mass term automatically selects the region
where the edge state can appear, y >0 or y<<0. This is rea-
sonable because we have used the particle-hole symmetry
operator o, to restrict the edge state only for y>0 or y <0 in
Sec. IV B. The particle-hole symmetry operator is nothing
but the mass term.
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